Drawing with CSS

4

Is there any way to draw a sheet like the image below using CSS?

    
asked by anonymous 18.10.2016 / 14:51

4 answers

2

You have to adapt your CSS for this, look at this default example for sheet:

HTML:

<div class="leaf"></div>

CSS:

.leaf { 
  width: 100px; height: 100px;
  background-color: #A0DE21; 
  -moz-border-radius: 100px 0px;
  -webkit-border-radius: 100px 0px;
  border-radius: 100px 0px;
}

See in JsFiddle

In this site , you have several examples of animations made with CSS.

You have these other sites too:

18.10.2016 / 15:44
5

To assist the assembly I am using: link

div {
  background: rgba(119, 178, 0, 1);
  background: -moz-linear-gradient(left, rgba(119, 178, 0, 1) 0%, rgba(119, 178, 0, 1) 48%, rgba(85, 128, 0, 1) 50%, rgba(86, 128, 0, 1) 52%, rgba(120, 178, 0, 1) 55%, rgba(119, 178, 0, 1) 100%);
  background: -webkit-gradient(left top, right top, color-stop(0%, rgba(119, 178, 0, 1)), color-stop(48%, rgba(119, 178, 0, 1)), color-stop(50%, rgba(85, 128, 0, 1)), color-stop(52%, rgba(86, 128, 0, 1)), color-stop(55%, rgba(120, 178, 0, 1)), color-stop(100%, rgba(119, 178, 0, 1)));
  background: -webkit-linear-gradient(left, rgba(119, 178, 0, 1) 0%, rgba(119, 178, 0, 1) 48%, rgba(85, 128, 0, 1) 50%, rgba(86, 128, 0, 1) 52%, rgba(120, 178, 0, 1) 55%, rgba(119, 178, 0, 1) 100%);
  background: -o-linear-gradient(left, rgba(119, 178, 0, 1) 0%, rgba(119, 178, 0, 1) 48%, rgba(85, 128, 0, 1) 50%, rgba(86, 128, 0, 1) 52%, rgba(120, 178, 0, 1) 55%, rgba(119, 178, 0, 1) 100%);
  background: -ms-linear-gradient(left, rgba(119, 178, 0, 1) 0%, rgba(119, 178, 0, 1) 48%, rgba(85, 128, 0, 1) 50%, rgba(86, 128, 0, 1) 52%, rgba(120, 178, 0, 1) 55%, rgba(119, 178, 0, 1) 100%);
  background: linear-gradient(to right, rgba(119, 178, 0, 1) 0%, rgba(119, 178, 0, 1) 48%, rgba(85, 128, 0, 1) 50%, rgba(86, 128, 0, 1) 52%, rgba(120, 178, 0, 1) 55%, rgba(119, 178, 0, 1) 100%);
  filter: progid: DXImageTransform.Microsoft.gradient(startColorstr='#77b200', endColorstr='#77b200', GradientType=1);
  border-radius: 122px 122px 122px 122px;
  -moz-border-radius: 122px 122px 122px 122px;
  -webkit-border-radius: 122px 122px 122px 122px;
  border: 16px solid #ECEDEE;
  -webkit-box-shadow: 6px 0px 5px 0px rgba(0, 0, 0, 0.37);
  -moz-box-shadow: 6px 0px 5px 0px rgba(0, 0, 0, 0.37);
  box-shadow: 6px 0px 5px 0px rgba(0, 0, 0, 0.37);
  -ms-transform: rotate(60deg);
  /* IE 9 */
  -webkit-transform: rotate(60deg);
  /* Chrome, Safari, Opera */
  transform: rotate(60deg);
  height:256px;
  width:200px;
  position: absolute;
  top: 10%;
  left: 10%;
}

/*
div:before {
  content: "";
  display: block;
  position: absolute;
  border-radius: 100% 50%;
  border-style: groove hidden hidden hidden;
  border-color: #ff0000;
  width: 57%;
  height: 80px;
  background-color: white;
  right: 0px;
  top: 40px;
}

div:after {
  content: "";
  display: block;
  position: absolute;
  border-radius: 100% 50%;
  border-style: hidden hidden groove hidden;
  border-color: #ff0000;
  width: 50%;
  height: 70px;
  background-color: white;
  left: 0;
  top: 27px;
}
*/
<div></div>

But look how hard it is, and stay away from that imagined, becoming unfeasible.

Then I try to finish drawing with only css.

Creating the same element using svg:

  

1 ° I saved your image in a folder;

     

2 ° I played the image in this tool {Project on GitHub };

     

3 ° I set the properties to be the size of the image;

     

4 ° I clicked to save the image.

Source code generated:

<?xml version="1.0" ?>
<svg width="256" height="256" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
  <!-- Created with SVG-edit - http://svg-edit.googlecode.com/ -->
  <g>
    <title>Layer 1</title>
    <image xlink:href=""
    id="svg_1" height="256" width="256" y="-1" x="0" />
  </g>
</svg>
    
18.10.2016 / 15:32
3

You have to use SVG follows an ex in the fiddle plus tutorial

<svg class="hello" width="230.3px" height="155.9px" viewBox="0 0 230.3 155.9">
    <path fill="none" stroke="#000000" stroke-miterlimit="10" d="M0.5,0.2c2.2,5.8,0.7,12,0.9,18.2C2,33.2,4.9,48.5,7,63.2
        c2.2,15.4,5.8,30.3,7.4,45.7c1.3,13.2,0.4,29.8,4.7,42c-0.3-16.9-3.1-48.5,19.5-49.6c21.2-1,11.1,25.8,23.1,37.2
        c28.4,27,66.2-29,34.8-38.2c-7.2,17.2-5.8,50.6,21.5,44.5c14.1-3.2,20.7-26.4,22.9-39.2c1.3-7.5,12.1-75.8,1-73.9
        c-12.1,2.1-15.8,45.5-16.3,54.4c-0.8,14.8,1.3,26.9,6.8,40.2c4.6,11,6.9,19.4,19.3,20.7c14.3,1.6,21.8-11.7,27.2-24
        c8.4-19.3,6.5-43,6.5-64c0-7.3-4.1-27-13-15.4c-4.3,5.6-4.1,23.6-4.4,30.7c-0.5,11.9-1.1,24.4,2.4,35.7c5,15.9,14.8,31.2,30.1,38.3
        c7.9,3.7,19.4,7.5,25.9-0.5c3.6-4.4,4.6-23.3,2.2-28.6c-5.5-12.5-25-10.9-29.4,1.6c-5.2,14.8,1.6,25.3,9,34.8"/>
</svg>

link to explanatory tutorial

link

    
18.10.2016 / 14:55
1

You can try to "cast" div using absurd values for each of the vertices with border-radius

The inside of the sheet you can do using repeating-radial-gradient with ellipse and box-shadow inset over to adjust color shading.

Here's how:

div {
    margin-left:100px;
    width: 100px;
    height: 200px;
    border-top-left-radius: 1430%;
    border-top-right-radius: 210%;
    border-bottom-left-radius: 410%;
    border-bottom-right-radius: 1260%;
    background: repeating-radial-gradient(ellipse at top left, #85C500, #85C500 95px, #5D8A00 95px, #5D8A00 100px, #85C500 100px);
    border: 8px solid #ECEDEE;
    box-shadow: -1px 0px 8px 0px rgba(0, 0, 0, 0.5), inset 0 30px 30px 0 rgba(0, 0, 0, 0.2);
    transform: rotate(-135deg);
}
<div></div>
    
04.10.2018 / 19:54