I have an array with two numeric variables: lat
and long
. Like this:
> head(pontos_sub)
id lat long
1 0 -22,91223 -43,18810
2 1 -22,91219 -43,18804
3 2 -22,91225 -43,18816
4 3 -22,89973 -43,20855
5 4 -22,89970 -43,20860
6 5 -22,89980 -43,20860
Now I make a round to round with 3 decimal digits:
pontos_sub$long_r <- round(pontos_sub$long, 3)
pontos_sub$lat_r <- round(pontos_sub$lat, 3)
> head(pontos_sub)
id lat long long_r lat_r
1 0 -22,91223 -43,18810 -43,188 -22,912
2 1 -22,91219 -43,18804 -43,188 -22,912
3 2 -22,91225 -43,18816 -43,188 -22,912
4 3 -22,89973 -43,20855 -43,209 -22,900
5 4 -22,89970 -43,20860 -43,209 -22,900
6 5 -22,89980 -43,20860 -43,209 -22,900
Now I want to use the package dplyr to find, grouped by each long_r lat_r and using the function distVincentyEllipsoid, the minimum distance to all lat long of the corresponding group. Something like this:
> newdata <- pontos_sub %>%
group_by(long_r,lat_r) %>%
summarise(min_long = special_fun(arg),
min_lat = special_fun(arg))
What would result something like this:
> head(newdata)
long_r lat_r min_long min_lat
1 -43,188 -22,912 xxxxxx xxxxxxx
4 -43,209 -22,900 xxxxxx xxxxxxx
Finally, I would like to know if this is the fastest way, because I have thousands of lines ... is there any other way to do this very fast?