Given the Change-Making algorithm:
change(C1, C2, ...., Cr: valores de denominações de moedas, onde C1 > C2 > ... > Cr; n: inteiro positivo)
for i := 1 para r
di := 0 {di conta a denominação das moedas Ci usadas}
while n >= Ci
di := di + 1 {adiciona uma moeda na denominação Ci}
n := n - Ci
{di é o número de moedas na denominação Ci na troca for i = 1, 2, ...}
And the question:
Considering the algorithm to make the exchange and the American currency pattern ($ 0.25, $ 0.10, $ 0.05, and $ 0.01).
Show that if we enter $ 0.12, then the algorithm will not produce an exchange using the smallest amount of possible currencies.
I would like to ask for help in understanding logic or where to start, as I am lost in this.
Sorry for the translation a little "rude" because I'm studying this in English and I do not know the correct terms in pt.